Quantum Computing for Everyone
# Quantum Computing for Everyone


Abstract
An accessible introduction to an exciting new area in computation, explaining such topics as qubits, entanglement, and quantum teleportation for the general reader.
Quantum computing is a beautiful fusion of quantum physics and computer science, incorporating some of the most stunning ideas from twentiethcentury physics into an entirely new way of thinking about computation. In this book, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone who is comfortable with high school mathematics. He explains qubits, entanglement, quantum teleportation, quantum algorithms, and other quantumrelated topics as clearly as possible for the general reader. Bernhardt, a mathematician himself, simplifies the mathematics as much as he can and provides elementary examples that illustrate both how the math works and what it means. Bernhardt introduces the basic unit of quantum computing, the qubit, and explains how the qubit can be measured; discusses entanglementâ€”which, he says, is easier to describe mathematically than verballyâ€”and what it means when two qubits are entangled (citing Einstein’s characterization of what happens when the measurement of one entangled qubit affects the second as â€śspooky action at a distanceâ€ť); and introduces quantum cryptography. He recaps standard topics in classical computingâ€”bits, gates, and logicâ€”and describes Edward Fredkin’s ingenious billiard ball computer. He defines quantum gates, considers the speed of quantum algorithms, and describes the building of quantum computers. By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing. The basic unit of computation is the qubit, not the bit.
Files and Links
Tags and Collections
 Keywords:: Quantum Computing, đź“™, đź“Ą
# Notes
 A qubit can be represented by the spin of an electron or the polarization of a photon.
 Repeating the same measurement results in the same answers.
 A sequence of measurements results in random answers.
 Measurements affect outcomes.
 No classical computer algorithm can generate truly random strings.
 Paul Dirac Notation